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ABSTRACT 

Following our previous paper [LZ] which deals with the group U(n, n), 

we study the structure of certain Howe quotients f~p,a and f~P'a(1) which 

are natural Sp(2n, R) modules arising from the Oscillator representation 

associated with the dual pair (O(p, q), Sp(2n, R)), by embedding them 

into the degenerate principal series representations of Sp(2n, R) studied 

in [L2]. 

1. I n t r o d u c t i o n  

In an earlier paper [LZ], we consider the dual pair (U(p,q),U(n,n)) C 
Sp(4(p + q)n, R) and examine the relationship between Howe quotients which 

correspond to determinant characters of U(p, q) and irreducible constituents of 

the degenerate principal series representations of U(n, n) studied in [L1]. In this 

paper we shall do the same for the dual pair (H, G) = (O(p, q), Sp(2n, R)) C_ 

Sp(2n(p + q),R). More precisely we let V -- R p+q and V n be the direct 

sum of n copies of V. As usual, we let Sp(2n(p + q), R) be the unique non- 

trivial double cover of Sp(2n(p + q), R) and $(V n) the Schwartz space of V n. 

Then Sp(2n(p + q, R) acts on $(V n) via the Oscillator representation w. Let 

S C_ $(V n) be the space of Schwartz functions which correspond to polynomi- 

als in the Fock model of w. Let f~P'q be the maximal quotient of S which is 
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trivial as an (o(p, q), L) module, where L TM O(p) × O(q) is a maximal com- 

pact subgroup of O(p, q). We also let ~P'q(1) be the maximal quotient of S on 

which (o(p, q), L) acts by the representation which corresponds to the determi- 

nant character g , det g of O(p, q). It turns out that under certain conditions, 

these Howe quotients flP,q and ~ P ' q ( 1 )  c a n  be embedded into the following de- 

generate series {I±(~r): a E C} of Sp(2n, R) studied in [L2]. Let P = M N  be 

the maximal parabolic subgroup of Sp(2n, R) where 

{ (o0)  )} 
M = m~ ----- 0 (g-1)t : a E GL( n ,N  , 

For each a E C, we let ~ :  P ~ C x be the characters given by 

(det a) ° if det a > O, 
~ ( m a n b ) =  ± l d e t a F  i f d e t a < O ,  

and let I + (~) be the corresponding induced representations. The representation 

spaces for I ± (a) are respectively 

{f  • C~(Sp(2n,  R)): f(pg) = 5(p)½ X~(P)f(g), g • Sp(2n, R ) , p  • P}, 

where 6 is the modular function for P,  and on which Sp(2n, R) acts by right 

translation. 

COROLLARY 3.2: Let pn = ~+1 We have G-equivariant embeddings 2 " 

np,q ~ [ I + ( ~ -  p.), 
[ z-(~ p~), 

if  p + q is even, and 

{ l-G), 
¢: ~p,q(i) ~ I+(½), 

i f  n is even. 

i f  p - q =-- 0 (mod 4), 
i fp  - q - 2 (mod 4), 

i f p - q - O ( m o d 4 ) ,  p + q = n ,  

i fp  - q - 2 (rood 4), p 4- q = n, 

The embedding ~ is first given by Kudla and Rallis in [KR1]. In the same 

paper, they also prove that  I 4- (~) are irreducible if and only if a ~ p~ 4- Z. 

Since all of f~P'q, f~P,q(1) and I+(a) are K-multiplicity free, where K ~= U(n) 

is a maximal compact subgroup of G, we can easily identify the images of f~v'q 
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and f~P'q(1) in I+(a).  In particular we shall show that  some of the irreducible 

unitary submodules of I + (a) can be identified with certain Howe quotients ~v,q 

or f~P'q(1). Since the module structure of I ± (a) has been completely determined 

in [L2], we can deduce the module structure of f~v'q and f~v'q(1). In particular we 

can describe a composition series of these f~P,q when it is reducible, and determine 

how the different f~P'q's with p + q fixed intersect each other in I±(a) .  In this 

paper we only consider Howe quotients which are embedded into I+(a).  Those 

Howe quotients which are embedded into I - ( a )  can be studied in exactly the 

same way, so we omit them. Here we highlight some of the results: 

m THEOREM: Let m be an even positive integer and a = y - p~. 

(i) I f2  <_ m < n, then the set {~(f~P'q): p+ q = m , p - q  - 0 (mod 4)} exhausts 

all the irreducible unitary submodules of I+(a).  

(ii) Assume that n is odd and m = n + 1, so that a = O. 

(a) I f  n --- 1 (mod 4), then 

I+(0) = (~ (~(~p ,~+ l -p ) ,  1 <_ p < n, podd} 

is the direct sum of ~ irreducible unitary submodules. 
2 

(b) I f  n -= 3 (mod 4), then 

1+(0) -- ~ { ~ ( ~ v ' ~ + l - v ) , 0  _< p _< n + 1, peven}  

is the direct sum of ~ irreducible unitary submodules. 

We remark that results in part (ii) are first given in [K]. This is related to an 

earlier work of Kashiwara and Vergne [KV2] (see also [S]). Recall that  if M is a 

module for a group or an algebra, then the socle of M is the sum of all irreducible 

submodules of M, and is written Soc (M) (see [GW]). The socle series of M is 

the ascending chain 

Soc °(M) C_ Soc I(M) C_ Soc 2(M) C_ . . .  

of submodules of M defined inductively by setting Soc °(M) = 0 and 

Soc r + l ( M ) / S o c  r (M) = Soc ( M / S o c  r (M) )  

for any nonnegative integer r. For m > n + 2 (so that a > 0), it can be shown 

that  each irreducible constituent in Soc 1 ( i  + (a)) is either a Howe quotient or the 
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intersection of two Howe quotients; and for j _> 2, each irreducible constituent 

in Soc j ( I+(a))  is either the quotient of one Howe quotient by a submodule in 

Soc j -1  (i+(a)),  or the quotient of the intersection of two Howe quotients by a 

submodule in Soc j -1 (i+(a)).  More precise statements similar to Proposition 

5.10 of [LZ] can be made using detailed results for the various cases given in sec- 

tion 4. We shall leave them to the readers. Thus the reducibility of I+(a) is fully 

accounted for by these Howe quotients. This gives the archimedean analog of the 

results of Kudla and Rallis on ramified degenerate principal series representations 

of symplectic groups over p-adic field ([KR2]). 

On the other hand, the local Howe duality principle [H1] tells us that  the 

representation ftv,q always has a unique irreducible quotient Qp'q. Notice that  

QP'q is the representation 0(1) associated to the trivial representation of H = 

O (p, q) via the local theta correspondence. By identifying Qp,q with an irreducible 

constituent of I+(a), we obtain the following. 

THEOREM: Suppose that p and q are nonnegative integers such that p +q  is even 

and p - q = 0(mod 4). Then QP'q is unitary i f  and only i f  either pq = 0 or both 

p , q < _ n +  l. 

The fact that Qp'q is unitary for p + q _< n also follows from the more general 

results of Li on stable dual pairs [Li]. 
+(1 When n is even, our results also reveal a very interesting phenomenon in I ~) 

that certain Howe quotients corresponding to the determinant character embed 

as irreducible submodules of certain Howe quotients which correspond to the 

trivial representation. 

+(1 THEOREM: Assume n is even. Then every irreducible constituent of I ~) is 

unitary. The socle length of I+(½) is equal to two, and the set 

{¢ (~tP'q(1)) : p + q -- n ,p  - q = 2 (mod 4)} 

e.xhausts all the irreducible unitary submodules of I + (1). 

(a) I f n  = 0(mod 4) and p and q are odd integers such that p + q = n + 2, then 

we also have embeddings ~: ~P'q ~ I+(½). Moreover, we have: 

(i) f~n-l ' l(1) is isomorphic to the unique irreducible submodule 

o l i n + l ,  1. 

(ii) I f  p is an odd integer such that 3 <_ p <_ n - 3, then DP,~-P(1) and 

DP-2,n-P+2(1) are isomorphic to the two irreducible submodules of 
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~p,n.-b 2--p, respectively.  

(iii) ~1"~-1(1) is isomorphic to the unique irreducible submodule  

of ~'~1,n+1. 

(b) I f  n - 2 (rood 4) and p and q are even integers such that  p + q = n + 2, 

then we also have embeddings  ~: ~v,q ~ I +" 1 ) ( 3 • Moreover  we have: 

(i) ~ ' ° ( 1 )  is isomorphic to ~ + 2 , o  

(ii) I f  p is an even integer such that  2 ~_ p ~_ n - 2, then ~P'n-P(1) and 

~v-2"-v+2(1)  are isomorphic to the two irreducible submodules  o f  

~p,~+2-p respectively.  

(iii) ~°'~(1) is isomorphic to ~o,,+2. 

When I+(~r) is reducible, the sizes of all irreducible constituents, as measured 

by their Gelfand-Kirillov dimension, are also determined. Just as in the case 

of U(n, n) [LZ], the size of each constituent can be read off from its position in 

the module diagram of I+(~r). But a new phenomenon emerges for Sp(2n, R) in 

that there can be two rows in the module diagram which has the maximal G-K 
+(1 dimension ~ .  For example this is the ease in I 3) for n even. The detailed 

result is given in section 5. 

The study of Howe quotients was pioneered by Kudla and Rallis ([KR1] in 

the archimedean case and [KR2] in the p-adic case), motivated by their work 

on the extension of the Siegel-Weil formula. In the p-adic case there are only 

two Howe quotients corresponding to two quadratic spaces (with different Hasse 

invariants) of a given even dimension and given a discriminant. These two Howe 

quotients are embedded into the same ramified degenerate series of Sp(2n, R), 

and their relationships are completely understood [KR2]. In the real case that we 

are considering, some results have already been obtained by Kudla and Rallis in 

[KR1]. For example, they have determined which of the ~2 p'q's are irreducible and 

which of the Qp,q's are finite dimensional. In fact for n -- 2, complete structural 

results have been stated and used in their work with Soudry [KRS]. One of our 

main purpose in this paper is to describe these results for any n and in any range 

of p, q as explicitly as possible. We hope they will prove to be useful in the further 

study of Eisenstein series and of L-functions for symplectic groups. 

ACKNOWLEDGEMENT: The authors would like to thank the referee for pointing 

out an inconsistency between the K-types of ~P'q and S*(I"~) H in an earlier 

version (see section 2). 
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2. h ' - t y p e s  o f  ~P'q a n d  ~P'q(1) 

Consider the reductive dual pair 

(H, G) = (O(p, q), Sp(2n, R)) C_ Sp(2n(p + q), R). 

For any subgroup E of Sp(2n(p+q), R), E shall denote the preimage of E under 

the canonical projection Sp(2n(p + q), R) ) Sp(2n(p + q), R). Let V = R p+q 

and let V ~ be the direct sum of n copies of V. Then Sp(2n(p + q), R) acts on 

the space S(V '~) of Schwartz functions on V ~ via the Oscillator representation 

w. By twisting w with a character, H will act linearly on S(V~): 

w(h). f (vl  . . . .  ,v~)= f (h  - 1 . v l , . . . , h  - l  "v~), (h • H, (vl . . . .  ,vn) • V~). 

We shall assume that this has been done from now on. 

Let S C_ S(V n) be the space of Schwartz functions which correspond to poly- 

nomials in the Fock model. Then S is naturally a (o(p,q),O(p) × O(q)) × 
(sp(2n, R), U(n)) module. Recall that gtp,q is the maximal quotient of S which is 

trivial as an (o(p, q), O(p) × O(q)) module, and gtP,q(1) is the maximal quotient 

of S on which (o(p, q), O(p) × O(q)) acts by the representation which corresponds 

to the determinant character h ) det h of O(p, q). The purpose of this section 

is to decompose 12P,q and 12P'q(1) into direct sums of K-types. As in the U(n, n) 
case [LZ], the K-types in ~P'q and gtP'q(1) are precisely the contragradient repre- 

sentations of those which occur in certain spaces of tempered distributions. We 

omit all the proofs in this section because they follow the same line of arguments 

used in the proofs for the corresponding results in the U(n, n) case, which are 

given in sections 2 and 3 of [LZ]. 

We now fix some notations. Recall that K = U(n) is a maximal compact 

subgroup of Sp(2n, R). Denote by A + the set of all dominant integral weights 

for U(n) with respect to the Borel subalgebra b + of upper triangular matrices. 

A + can be identified in the usual way with the set of all n-tuples of integers 

A = (A1, A2,...,AN) such that A1 _> A 2 _ > ' " _ >  A~- For eachA • A +, p~ shall 

denote a copy of the irreducible representation of U(n) with highest weight A. 

For convenience, we also let 

In = ( 1 , . . . , 1 ) .  

Note that 1~ is the highest weight of the determinant character of U(n). In a 

similar way, every irreducible representation of R" -- U(n) is of the form p~, but 

the components of A can be half integers. 
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Now ~) induces an action of Sp(2n(p+ q), R) on the space S*(V n) of tempered 

distributions on V n in the usual way. Let S*(V~)  H be the space of H-invariant 

tempered distributions on V n. Kudla and Rallis showed in [KR1] that  it is 

generated as a G module by the Dirac distribution. The second-named author 

later generalized their result to any classical group H of hermitian or skew- 

hermitian type acting on the direct sum of n-copies of the standard module V, 

using a different and more direct approach ([Zhu]). 

THEOREM 2.1 ([KR1], see also [Zhu]): 

(a) S * ( P n )  H is the closed span of  the set  {w(g)hlg 6 G}. Here ~ is the Dirac 

distribution at the origin of  V '~. 

(b) The mult ipl ic i ty  o f t  in S * ( v n )  H is at most  one for any 7- C Ix'. It  is equal 

to one if  and only i f  the contragradient representation o f t  is isomorphic to 

p~, v* ~- p~, where 

A - P - q l n  + ( ~ 1 , . . . , ~ t , 0 , . . . , 0 , - / 3 8 , . . . , - / 3 1 ) ,  
2 

and ~ ,  fl~ are all even integers satisfying 

c~1_>. - ->~t_>01  / ) l_> ' "_>/~s_>0 ,  t < m i n ( p , n ) , s < m i n ( q , n ) .  

Moreover the projection of  5 to such a bY-type is not  zero. 

Remark:  Theorem I of [Zhu] states that  the K-types  in S* (Vn)  H are of the 

form ~- -~ p~, where A is given above. This is incorrect. A correct proof can be 

obtained by making only a minor change in the original proof. 

Next we let (fl*)P'q (1) be the space of tempered distributions consisting of 

those • e $* (V ~) such that  

h .  • = (deth)~,  h E H. 

Let X = (xij)l<_i<_p+q,l<j<_~ be the natural coordinates of V ~ ~ Mp+q,~(R). For 

1 < t < m i n ( p + q , n ) ,  let 

Ot = Or(X) = det 

( +  ° GQX12 0 OxOlt 

\ c~xtl Oxt2 cQxtt 

Assume that  p + q < n. Then one can verify that  for h E H,  we have 

h . (Op+qh) = (det h)(Op+qh). 
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Consequently the tempered distribution 7) given by 

7) = Op+q~ 

is in the space (~*)P'q (1). We have the following description of (~*)P'q (1). 

THEOREM 2.2: (~*)P'q (1) is nontrivial i f  and only i f  p +  q <_ n. I f  p + q <_ n, 

then 

(a) (f~*)P'q (1) is the closed span of the set {w(g)7)[g C 2} .  

(b) The multiplicity o f t  in fF(1) is at most one for any r E K.  It is equal 

to one if and only if  the contragradient module of T is isomorphic to p~, 

T* TM pA, where 

A = ~ - - ~  1,~ + ( a l ,  . . . , Olp, 0 , . . . ,  0 ,  - t 3 q ,  . . . , - ~ 1 ) ,  

and a~, ~3i are all odd integers satisfying 

a1>_. . .>_%>_1,  Zl>_. . .>_3q>_l.  

Moreover the projection ofT) to such a K-type is not zero. 

We remark that Przebinda has proved that (~2") v'q (1) is trivial if p + q > n 

([P]). 

Notice that there is a non-degenerate G-equivalent pairing between ~2p,q (resp. 

flP'q(1)) and S*(Vn) H (resp. (f~*)P'q (1)), so that their ~/-types are contragradi- 

ent to each other. 

PROPOSITION 2.3 ([KR1]): The B:-types in f~v,q are those representations of the 

form 7- ~ p~, where 

A ---- ~ - - ~  In  q- ( a l , . . . , a t , 0 , . . . , 0 , - - [ 3 s , . . . , - - / ~ 1 ) ,  

and ai, 13i are even integers such that 

a l  _~ " ' "  ~_ at ~ 0, /~I > "'" >-- /3s >_ 0, t _< rain(p, n), s _< rain(q, n). 

Moreover each such K-type occurs with multiplicity one. 

PROPOSITION 2.4: f~P'q(1) is nonempty if and only if p + q <_ n. If p + q < n, 

then the ~'-types in ~ P ' q ( 1 )  a r e  those representations of the form "r ~ pX, where 

A =  ln + (a l , . . . , ap ,  O,. . . ,O,--t~q,. . . ,--~l),  
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and cti, /3i are odd integers such that 

(~1 :> . . .  >_ (~p > 1, /31 > . . .  _> L~q _> 1. 

Moreover each such ~'-type occurs with multiplicity one. 

The proofs for Theorems 2.1, 2.2 and Propositions 2.3, 2.4 are similar to that 

of Theorems 3.1, 3.4, Propositions 2.1 and 2.2 and Corollary 3.11 of [LZ]. The 

strategy is as follows: First we show that the/~'-types of f~P'q and f~P'q(1) must 

be of the forms given in Propositions 2.3 and 2.4 and with multiplicity at most 

one. Then we show that the eontragradient representations of those /~'-types 

indeed occur in S* (Vn) ft and (~2") p'q (1) by showing that, the Dirac distribution 

o r /3  has nonzero projections there. 

3. Embedding of Howe quotients into degenerate principal series 

It is shown in [KR1] that the Howe quotient t2 p'q can be embedded into a certain 

degenerate principal series representation of Sp(2n, R). We shall show that for 

p+q  = n, ~P'q(1) can be embedded in a similar way. Further i f p + q  is even, ~P'q 

and ~P'q(1) can  in fact be embedded into the degenerate series {i:k(~): c~ C C} 

of Sp(2n, R) studied in [L2]. Thus we can use the results in [L2] to deduce the 

structure of these Howe's quotients by identifying their images in the degenerate 

series. 

We shall identify Sp = Sp(2(p + q)n, R) as a set with 

{ ( g , e ) : g • S p ( 2 ( p + q ) n , R ) ,  s = + l } .  

We recall that G = Sp(2n, R), and G = Sp(2n, R) is the preimage of G in Sp. 

We also recall the parabolic subgroup P = M N  of Sp(2n, R). Then /5 = ~ 

where 

" i  = { ( m a ,  ~): m a  • M ,  £ ~- nt-1}, JV = {(rib, 1): n b •  N}.  

Let X1 be the following character of M of order 4: 

1 i f d e t a > 0 ,  
~ l ( m a , e ) = e  i i f d e t a < 0 .  

For ~ ~ Z/4Z,  a E C, let 

,~(o)(m~,.) = I det al°~l ( ~ ,  .)~ 
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and extend trivially on N. Let I'~ (a) = I n d ~  (a) be the corresponding induced 

representation of G. The representation space for I~(a) is 

{f  e C°°(G): f(p"g) -- 6~(p-')½Xe,(a)(p~f(g ), 'q'g e G,~ e P} 

and on which G acts by right translation. Here ~ is the modular function of the 
__ n+! group j5 and is given by 6F(p-') -- I get el 2:~ for ~ = (ma, e)(rib, 1) and Pn 2 • 

Now recall the reductive dual pair (H,G) = (O(p,q),Sp(2n, R)) C_ 

Sp(2(p + q)n, R), and the action of Sp(2(p + q)n, R) on S ( V  n) via the Oscil- 

lator representation co. We can identify P with the subgroup of Sp(2n, R) fixing 
V n ,~ = Mp+q,,~(R). Then we have 

= 

[w((nb, 1))f](x) = e½it~(i~':b~ ') f (x), 

for (ma,e) E M, (nb, 1) C N, f E S(Mp+q,,~(R)), x E Mp+q,~(n). Here 

/3 = 2P-~, and a = p - q (mod 4). It follows that 

If we assume further that p + q = n, then direct computations show that for 

w(p---). Op+qa = ~ (/3)-1 (~  (get a)-10p+q/f = X~+2 (/3 + 1)-1 (p-')0p+q& 

Let T) be ~i E ,5*(Vn) H or cOp+qt5 E (f~*)P'q (1) for p+q  = n. For any f E S(Vn),  

we consider the function 

Df(y) = ~)(cd(~)f), y e G. 

Then since 7)(w(~) f )  = (w(p-)-lT))(w(~.f), the transformation properties of 7) 

under /5 implies that Df  is in the space of the induced representation I~(a),  

where 

(1) a =  ~ - p ~ ,  a - p - q ( m o d 4 )  if 7 ) = 6 ,  
a 2 a ~ + l - p ~ =  ½, a - p - q + 2 ( m o d 4 )  ifT)=Op+qS, p + q = n .  

Consequently we obtain a map 

s(:) , L(o) 

f , :5:. 
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We now restrict the map to the space S C S(V~). Because of the way Howe's 

quotients ~P'q and ~P'q(1) a r e  defined and the transformation property of D, this 

restriction map factors through ~P'q and ~tP'q(1), respectively. We shall use ~2 

(respectively g,) to denote this map from ~P,q (respectively ~P'q(1)) to I~(a). 

THEOREM 3.1: The maps 

::  ap,~ _~ [~(~)  

are G-equiyariant embeddings. Here a and o~ are as in equation (1). 

The embedding ~a is first given by Kudla and Rallis in [KR1]. For the 

embedding ~p, the proof is similar to that of Theorem 4.5 of [LZ]. 

If p + q is even, then w[~ factors through G. This induces an action of G on 

S(Vn). We shall abuse notations and denote this action of G also by w. For each 

f 6 S(V'~), we let 91 be the function on G given by 

DAy) = 9 ( ~ ( g ) : ) ,  g e a .  

Let X+(cr), X-(a)  be the characters of P given by X+(cr) = ,~o(a)lp, and X-(a)  = 

,~2(cr)lp. Thus we have 

(deta) 
Xi(a)(p)  = +l det alO, 

for p = manb E P. Further let I+(a) = 

if det a > 0, 
if det a < 0, 

IndGpx+(cr) be the corresponding 

(normalized) induced representation of G. Then we have 

COROLLARY 3.2: Suppose that p + q is even. Then the map 

:-----,D: 

induces the following G-equivariant embeddings: 

~: ft p'q ~ { 

¢: ~P'q(1) ~ { 

z + ( ~  - p=), i fp - q = 0 (rood4), 
I - ( ~  p=), i f p -  q_= 2(rood4), 

I-(½), i f p - q = O ( m o d 4 ) ,  p + q = n ,  
I+(1~ ~:, i f p - q = 2 ( m o d 4 ) ,  p + q = n .  
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4. T h e  s t r u c t u r e  of  f~P'q a n d  f~P'q(1) 

In this section we shall describe the images of ~P,q and ~P'q(1) under the 

embeddings 

~ P , q ~ I  + ( ~ - p ~ ) ,  p - q - 0 ( m o d 4 ) ,  

gtP'q(1) ~ I + (½), p -  q - 0 (mod 4), p +  q = n is even, 

given in Corollary 3.2. The other embeddings given in Corollary 3.2 can be 

studied in a similar way, and we leave them to the readers. Using the results in 

[L2], we are able to deduce the module structure of gtp,q and ~P,q(1). Since all 

these representations are K-multiplicity free, the images of 12p,q and ~P'q(1) are 

given by the direct sums of K-types  whose highest weights are those occurring 

in ~P'q and ~P'q(1), respectively. Hence to prove our results in this section we 

only need to verify carefully that  the spaces involved contain exactly the same 

K-types.  Since such arguments are elementary and are similar to those used in 

[LZ], we shall omit all the proofs. 

We shall first consider ~2p,q. Let m be a fixed positive even integer. By 

Corollary 3.2, for every pair (p, q) of nonnegative integers such that  p + q = m 

and p - q = 0 (mod 4), we have 

~v,q ~ i +(a) 

m where a -- 5- - p~. We need to consider two cases, according to whether n is 

even or odd. 

Then p~ = CASE: n even. We first assume that  m -  2 (mod4).  Let k--- ~. 

,~+1 _ _ k + ½ ,  a n d a _ _  m _ k _ ½ _ _ k _ ½ _ 2 k + 5 _ , m  so that  [ a l - k  (mod2) .  2 5- 
L e t A  + = { A = ( A 1 , . . . , A , ~ ) :  )h >_ A2 _> " "  _> A,~, is even Vj}. F o r 0 _ < a , b _ < k ,  

let Lab be the set of A E A + which satisfy 

A2~-1_>-(~+n-2r+l), l < r < a - 1 ,  

A2~-1 < - ( a + n - 2 r + l ) ,  a < r < k ,  

A2~ > ~ + 2 r -  1, 1 < r < b -  1, 

A2~ _< ~ + 2 r -  1, b < r < k, 

where a - ~ .  If L ~  is non-empty then the direct sum of all K- types  whose 

highest weights lie in Lab forms an irreducible constituent of l+ (a ) .  For conve- 

nience, we also denote this subspace by L,b. Note that  if L1,~+1 ~ 0, then it is 

the only finite dimensional irreducible constituent. 
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PROPOSITION 4.1 (cf. Theorem 5.2 of [L2]): Let n = 2k be a positive even 
1 integer, and let ~ C -~ + Z be such that [~r] - k (rood 2). 

(i) If  or <_ -½, then 

I+(a) = (~{Lab: 0 _ < a - b < , ' 1 } ,  

where r l  = min([]a]] + 1, k), and the socle series (see page 31) or I+(~) is 

given by 

S o c J ( I + ( a ) ) =  { 1+( ° )~{Lab: , ' l - - j +  l <_a-b<_r l }  Jl>-<-"l j <-+rl'l. 

Moreover, a constituent Lab of I+(a) is unitarizable if  and only ira = b or 

- k  + ½ < a < -½ and a - b = rl. 

(ii) I f a  >_ ½, then 

I + ( a ) = ( ~ ( L a b :  - l <_b-a  <_r:}, 

where 7"2 = min([a], k), and the socle series of I+(o ") is given by 

{ (~{Lab: - l<_b-a<_ j -2 }  l < _ j < r 2 + l ,  
Soc J ( I+(~) )  = i + ( ~  ) j > r~ + 2. 

Moreover, a constituent Lab of I+(a) is unitarizable if  and only i f  a = b+ 1 

or ~l < a < k + ~ l  and b - a = r2. 

SUBCASE: m - - 2  (rood4) ,  2 < m _ < n .  In this case, we have[or] = k  ( rood2)  

1 1 Each of the irreducible constituent. Lab such tha t  and - k +  ~ _< a < - ~ .  

a - b = - ~  + k + 1 forms an irreducible uni tary  submodule of I + (a) and this 

accounts  for all the irreducible submodules of I+((r).  It turns out  tha t  each of 

these submodules can be identified with some Howe quotient f~P'q. Note tha t  if 

p and q are nonnegative integers such that  p + q = m, then p - q = 0 (mod 4) if 

and only if bo th  p and q are odd. 

THEOREM 4.2: Assume that n is even. Let 2 < m <_ n and m - 2(mod 4). If  p 

and q are positive odd integers such that p + q = m, then 

2 ~ 2 

Hence is an irreaucibJe unitary su module I+ - po). Moreover, 

the set {~(~v,q): p + q = m, p and q are odd and positive} exhausts all the 

irreducible unitary submodules e l i  + ( ~ - P n ) .  
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i <0-< _½ The module diagram (see [A] or §7 of ILl]) of I+(a) for - k  + ~ is 

given in Figure 1 below. Thus we see that the Howe quotients t2 p'q in Theorem 

4.2 are mapped to the lowest row of the module diagram. 

Lk+i,k+i Lk,k Lk-l ,k-1 L2,2 Ll,i 

L~+t,k Lk,~-i L2,1 

Lk+l,k+l-r I L~:,k-r I Lrl+l,l 

Figure 1. 

We consider an example. Let n = 8 and m = 6. Then (5, 1), (3, 3) and (5, 1) 

are all the pairs (p, q) of odd positive integers such that p + q = 6. For these 

pairs (p, q), we have 

By Theorem 4.2, we have ~o(fl 5'1) = L5,3, ~o(fl 3'3) : L4,2, ~(fll,5) = L3,1 (see 

Figure 2 below). 

L5,3 L4,2 L3,, 

Figure 2. 

Here and after, a black circle represents a unitary constituent. 

SUBCASE: m - -  2 ( m o d 4 ) , m  > n + 2 .  In this case, a > ,~+2_ n+t i If 
- -  - -  2 2 : 2" 

1 < O .  < 1 0. k k+½, then the module diagram of I+(0-) is given in Figure 3. If ~ k - ~ ,  

then the diagram of I+{a) is the configuration obtained by deleting the top k-[0-] 

rows from Figure 3. 
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If Ls,t is a constituent of I+(a), we let M(s,t) be the submodule of I+(a) 
generated by Ls,t (see Figure 4 below). Specifically, 

M(s, t) = O{La ,b :  a _> s, b _< t}. 

In particular, if Ll,k+l ~ ~, then M(1, k + 1) = I+(a). 

LI,~+~ 

L2,k+l Ll,k 

Lk,~+~ L~-~,k L2,3 L1,2 

L/c+l,k+l L~,k L2,2 Lt,~ 

Lk+1,k Lk,~-1 L3,2 L2,1 

Ls,k+l 

Figure 3. 

\ 

Ls,~ 

/ \ 

( /5 
/ 

Figure 4. 
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THEOREM 4.3: Assume that n = 2k is even. Let m be an even integer such that 

m > n + 2 and m -= 2 (mod 4). I f p  and q are odd integers such that p + q = m, 

then 

(m ) (~QP'q) = M(s,  t) C I + -~ - p~ 

and 

Q p,q = Ls~t~ 

where 

n - q + 3  ) 
s = max 2 ,1 , 

[ 'p+ l ) 
t =  m i n ~ , ~ , k +  1 . 

In particular, we have: 

(i) ~(~P'q) = I+(a) i f  and only i f  Qv,q is finite dimensional i f  and only i f  

p>_ n +  1 andq >_ n +  l. 

(ii) flv,q is reducible. 

(iii) Qpq is unitary i f  and only if  p, q <_ n + 1. 

We illustrate this theorem by the following example. Let n = 8 and m = 14. 

There are 7 pairs of odd positive integers (p, q) such that  p + q = 14; namely 

(13, 1), (11, 3), (9, 5), (7, 7), (5, 9), (3, 11) and (1, 13). For such pairs (p, q), we 

have 

By Theorem 4.3, we have ~(f~13,1) = M(5,5) ,  qv(f~ H'3) = M(4,5) ,  ~ (f~9,5) 
-- M(3,5) ,  ~v(f~ 7'7) = M(2,4) ,  ~(~2 5,9) = M(1,3) ,  qv(gt 3'11) = M(1,2) ,  and 

(f~1,13) = M(1,  1). We indicate the images of f~v'q in the module diagram of 



Vol. 100, 1997 DEGENERATE PRINCIPAL SERIES 45 

I + ( 5 / 2 )  in Figure 5. 
~'~11,3 ~'~3,11 

f~13,1 ~1,13 

~9~5 ~7 ,7  

Figure 5. 

Next  we consider the case when m --- 0 (mod 4). In this case a = ~ - k - ½ = 

k + 3 +  ~ _ 2 k _ 2  so tha t  [0] = k + l  ( m o d 2 ) .  As pointed out  in [L2], the 

s t ructure  of I+(a) in this case can be deduced from tha t  of I+(-a) ,  which is 

contragradient  to I+(a). Since I - a ]  -- k (mod 2), the s t ructure  of I+(-a)  is 

given in Proposi t ion  4.1. We shall now describe the s t ructure  of I + ( a ) .  Suppose 

Lij is a const i tuent  of I+(--a). We let 

L / * j = { A e A + :  A" E L i j } .  

Here if A -- (A1, ..., An), then A* = ( - - A n , - A n - l ,  . . . , -~1 ) .  Explici t ly A G L~*j if 

and only if 
A2r-1 > a + 2 r -  2, l < r < k - j + l ,  
A2r_l < a + 2 r -  2, k - j + 2 < r < k ,  
A2~ >_ -((~ + n -  2r), l < r < k - i + l ,  
,~2~ < -(c~ + n - 2r), k - i + 2 < r < k ,  

m * where a - 2 • As before we identify Lij with the subspace of I + (a)  which is 

the direct sum of all the K - t y p e s  whose highest weights are contained in Li* j .  

Then  Li* j is an irreducible const i tuent  of 1+(o) and I+(a) = ®{L/*j: Lij ¢ 0}. 

We s ta te  the following proposi t ion for the convenience of the readers. 

1 PROPOSITION 4.4: Let n = 2k be an even integer, and let a E -~ + Z be such 

tha t  In] = k + 1 (mod 2). 
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(i) > ½, then 

= G ( L : b :  0 < a - b _< r l }  

where r l  = min([a] + 1, k), and the socle series of  I÷(~ )  is given by 

{ ~ { L * b :  O < _ a - b < _ k - 1 } ,  l < _ j < _ r l ,  
Soc j ( I+(a) )  = i+(a) ,  j >_ rl + 1. 

(ii) I f  a <_ - 1, then 

I+(a)  = ~ { L a b :  - 1  < b -  a < r2} 

where r2 = min([l~[], k), and the soele series o f  I+(~) is given by 

Soc J = 

{ {Lab: r 2 - j - ~ l ~ b - a ~ r 2 }  , l < j _ < r ~ + l ,  

I+(a) ,  J k r2 + 2. 

Note tha t  if m -= 0 (mod 4) and p + q = m, then p - q =- 0 (rood 4) if and only 

if bo th  p and q are even. 

SUBCASE: m --= 0 (mod 4), 4 < m < n. Note tha t  in this ease a < 1 
- -  - -  - -  2 "  

THEOREM 4.5: A s s u m e  that  n is even. Let  m be an integer such that  4 < rn <_ n 

and m -- 0 (mod 4). Then for any  positive even integers p and q such that  

p + q = m,  we have 

= L + ~ ,  2 - ~-p+2 C -- fin • 

Hence each ~(flv,q) is irreducible and unitary. Moreover, the set  {~(ftp,q): p + 

q = m, p and q are even and nonnegatiye} exhausts all the irreducible unitary 

submodules  o I + ( ~  - pn). 

1 Let  * be a n i r r e -  SUBCASE: rrt - - - -  0 (mod 4), m _> n + 2. In this case a >_ ~. Lij 

ducible const i tuent  of I+(a) .  Let M'( i ,  j )  be the submodule  of I + ( a )  genera ted  

by Li* j .  Then  

M ' ( i , j )  = ®{Lib: a _< i, b > j} .  

THEOREM 4.6: Assume that  n = 2k is even. Let  m be an integer such that  

m > n + 2 and m =- 0 (mod 4). Then for any pair o f  posit ive even integers p and 

q such tha t  p + q = m, we have 

(flP'q) -- M ' ( s ,  t), 
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and 

where 

Q p , q  : , J  . 

s = m i n  , k + l  , a n d t = m a x  2 ' 

In particular, we have 

(i) •(t2p,q) = I+(a) i f  and  only if p >_ n and q _> n. 

(ii) ~2p,q is irreducible if  and only if  pq = O. 

(iii) QP'q is not  finite dimensional 

(iv) QP'q is unitary if  and  only if  either pq = 0 or p, q < n. 

CASE: n odd. Let  n = 2k + 1. Again  we shall  first consider  the  case when 

"~ - k -  1 = k ( m o d  2).  m -= 2 (mod 4). Note  tha t  in this  case we have a = ~- 

SUBCASE: 2 _< m _< n -- 1, m = 2 (mod 4). In this  case we have - k  < a < - 1 .  

For  nonnegat ive  integers s and  t such tha t  s + t _< k, we let Ra(s,t) be the set of 

A • A + which sat isfy 

A2~ > c ~ + 2 r - 1 ,  1 < r < s ,  

- ( c ~ + n - 2 r ) < _ A 2 ~ < _ a + 2 r - 1 ,  s + l < r < k - t ,  

A2~ < - ( a + n - 2 r ) ,  k - t + l < r < k ,  

where a = - m / 2 .  If  Ra(s,t) ~ O, then  the d i rec t  sum of all K - t y p e s  whose highest  

weights lie in R~(~,t) form an irreducible cons t i tuent  of I+(a) and we shall  denote  

this  cons t i tuen t  also by F~a(s,t). Notice tha t  Ra(~,t) is not  finite d imensional .  

PROPOSITION 4.7 (cf. Theorem 5.4 of [L2]): Let n = 2k + 1 be an odd in teger  

and let cr be a negative integer such that ~ ~ k (mod 2). Then 

= k - <_ s + t < k} ,  

where r = min( la] ,  k), and  the socle series of I+(a) is given by 

Soc J(I+(a)) = 

{ ( ~ { R a ( s , t ) : k - r < s + t < _ k - r + j - 1 }  
I+(a) 

Moreover, we have: 

(i) 

l < _ j < r ,  

j > _ r + l .  

For s and t such that s + t = k - r, Ra(s,t) is an irreducible submodule of 

I+(G); 
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(ii) A constituent R~(8,0 is unitarizable if  and only i f  - k  < a < - 1  and s + t = 

k + a .  

THEOREM 4.8: Assume that  n is odd. Let m be an integer such that 2 < m < 

n - 1 and m ~ 2 (mod 4). I fp  and q are odd integers such that p + q = m, then 

m 

Hence each ~( f~P,q) is an irreducible unitary submodule of  I + ( ~ - p,~ ). Moreover, 

the set {~(flv,q): p + q = m, p and q are positive and odd} exhausts all the 

irreducible unitary submodules of I + ( ~ - pn). 

We now illustrate this theorem with an example. Let n = 9 and m = 6. If 

(p, q) is one of the pairs (5, 1), (3, 3) and (1, 5), then 

12v,q ¢--~ I+ ( ~ -  lO) = I+( -2 ) .  

The  module diagram of 1 + ( - 2 )  is given in Figure 6. 

Ra(4,0) Ra(3,1) Ra(2.2) Ra(1,3) Ra(0,4) 

Ra(3.0) Ra(2,1) Ra(1,2) Ra(0,3) 

R=(2.0) R.(13) R.(0,2) 

Figure 6. 

By Theorem 4.8, we have ~(f~5,1) = R~(2,0), ~(~3,3) : Ra(1,1), and ~(~1,5)  

= Ra(o,2). Thus f~5,1, ~'~3,3 and ~21,5 are mapped  to the lowest row in the module 

diagram of I + ( -2 ) .  

SUBCASE: m = n q- 1, m = 2 (mod 4). In this case, n - 1 (mod 4) and a = 0. 

Note tha t  I+(0)  is on the uni tary  axis. In fact, by Theorem 5.5 of [L2], we have 

k 

I+(o)-- 
j=0 
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where for each 0 < j <_ k, Uj is the direct sum of all K-types whose highest 

weights lie in the set 

{A • A+: A2j+2 _~ --k -[- 2j _< "~2j}. 

Each Uj is an irreducible unitary submodule of t+(0).  

THEOREM 4.9: If  n -- 1 (mod 4) and if p and q are odd integers such that 

p + q = n +  l, then 

= 

In particular, 

I + ( 0 )  = ~{~(~--~p,n+l-p): 1 <_ p <_ n,p odd}. 

SUBCASE: m ---- 2(mod 4), m >_ n + 3. In this case, we have a _ 1. As pointed 

out in [L2], the structure of I+(a) can be deduced from the dual module I+(-cr). 

We shall give now a brief summary on the structure of I+(a) here. Suppose that  

Ra(s,t) be an irreducible constituent of I+(-~r).  Let 

R*(~,t ) = (A E A+: A* • Ra(~,t)}. 

Explicitly, A E R~(~,t) if and only if 

A2r ~ - ( a  + n -  2r), 
+ 2 r - l < A 2 r  ~ - ( a + n - 2 r ) ,  

A2r < a + 2 r - 1 ,  

l < r < t ,  
t + l < r < k - s ,  
k - s + l < r < k ,  

where a = -m /2 .  If a > k, the module diagram of I+(a) is a triangle, as given 

in Figure 7. 
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R:<0,0) 

R~(o,l) R~(1,o) 

R:(o,2) R:(1,1) R:(2,o) 

R:(0,k) R:(1,k-l) R:(k-l,1) R:(k,o) 

Figure 7. 

I f  1 < a < k - 1, then  the module  d iagram of I+(a) is the triangle with its top 

k - a rows deleted. For any integral a _> 1, each of the irreducible const i tuents  

at  the lowest row forms an irreducible uni tary  submodule  of I+(a). If  1 < a < k, 

then  the irreducible const i tuents  at  the top rows are also unitary. 

If  R* s t is an irreducible const i tuent  of I + ( a ) ,  we let S(s ,  t) be the submodule  ( , )  
of I+(a) genera ted  by Ra(s,t)- Specifically, we have 

S(s , t )  G k): J >- s, k >_ t }  

The  module  d iag ram of S(s, t) is a subtr iangle in the module  d iag ram of I+'(a). 

Note t ha t  S(0, 0) -- I+(a). 

THEOREM 4.10: Assume t ha t  n is odd. Let m be an integer such tha t  m _> n + 3  

and m -_ 2 (mod 4). If  p and q are positive odd integers such that p + q = m, 

then we have 

(~P'q) = S(s, t) C I+(~- P~), 

and 

Qp,q ~ R*a(s,t), 

where s = m a x ( 0 ,  n2-~) and t =  m a x ( 0 ,  n2-~). In particular, we have: 

(i) ~(g~P'q) = I + ( q )  if  and only i fp  >_ n and q > n. 

(ii) f~P'q is irreducible i f  and only if  either n = 1 or n > 1 and ( p - 1 ) ( q - 1 )  = 0. 

(iii) Qv,q is not finite dimensional. 
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(iv) QP'q is unitary if and only if p, q <_ n. 

We now il lustrate Theorem 4.10 with an example.  Let n = 9 and m = 14. If  

p and q are odd integers such tha t  p + q -- 14, then 

Now by Theorem 4.10, we have ~ (fl13,,) = S(0, 4), ~ (f~11,3) = S(0, 3), ~ (~9,5) 

= S(0 ,2) ,  ~ (f~7,7) = S(1,1) ,  ~ (~5 ,9)  = S(2,0) ,  ~ (f~3,11) = S(3,0) ,  and 

(~1,13) = S(4, 0). The  images of these f~P,q in the module  d iagram of I + (2) 

are given in Figure 8. 

fl,i,3 ~3,1, 

f~la,1 fp,,3 

~7,7 

Figure 8. 

Next  we consider the case when m -= 0 (mod 4). In this case a = ~ - k - 1 = 

k + 1 (mod 2). 

SUBCASE: m ---- 0 (mod 4), 4 < m _< n - 1. Under  these assumptions,  a _< - 1 .  

We recall the s t ruc ture  of I+(a) in this case. For nonnegative integers s and t 

such t ha t  s + t _< k + 1, let W~(s,t) be the set of all A E A + which satisfy the 

following conditions: 

A2r-1 > a + 2 r - 2 ,  l < r < s ,  

- ( a  + n - 2 r  + 1)_< A2r_l _< a + 2 r - 2 ,  s + l < r < k - t + l ,  
A2r-1 < - ( a  + n -  2 r +  1), k - t + 2  < r < k + l ,  

where a = - ~ .  As usual, if Wa(s,t) ¢ 0, we identify Wa(s,t) with the subspace of 

I + (a)  which is the direct sum of all K - t y p e s  whose highest weights lie in Wa(8,t). 

Note tha t  among  the nonempty  Wa(s,t)'s, only W~(0,o) is finite dimensional.  
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THEOREM 4.11: A s s u m e  that  n is odd. Let  m be an integer such that  4 < m <<_ 

n - 1 and m =_ 0 (mod 4). I f p  and q are nonnegative even integers such that  

p + q = m,  then (m ) ~ (np,q) = w o ( ~ , l )  c_ i + 7 - pn . 

Hence each ~(f~v,q ) is an irreducible uni tary  submodule  of  I + ( ~ - p,~). Moreover 

the set {~(f~v'q): p + q = m, p and q are nonnegat ive and even } exhausts  all 

the irreducible uni tary submodules  o f  I+(  ~ - Pn). 

SUBCASE: m -- 0 (mod 4), m = n + 1. In this case, n ~- 3 (mod 4) and a = 0. 

I + (0) is on the uni ta ry  axis and 

k + l  

I+(o)=GFj, 
j=O 

where for each 0 < j _< k + 1, Fj is the direct sum of all K - t y p e s  whose highest 

weights lie in the set 

{ A • A + :  A 2 j + I _ < - k + 2 j - I _ < A 2 j - 1 } .  

Each Fj is an irreducible uni tary  submodule  of I + (0). 

THEOREM 4.12: I f n  ---- 3 (mod 4) and i f p  and q are nonnegat iye even integers 

such that  p + q = n + 1, then we have 

In particular, 

,(np,q) = Fg c_ I+(O). 

I+(o) = @ { , ( n p . " + ' - p ) :  o _< p <_ n + 1 , ;  even}. 

SUBCASE: m >_ n + 3, m ----- 0 (rood 4). In this case, a _> 1. Suppose Wa(8,0 is 

a const i tuent  in I + ( - a ) .  Let 

w:(8, , )  = {~ • A+: ~* • Wo(s,o}. 

Explicitly, .~ • W~(8,t) if and only if 

A2~-1 _> - ( a  + n -  2r + 1), 1 < r < t, 
a + 2 r - 2 < A 2 . _ l < - ( a + n - 2 r + l ) ,  t + l < r < k + l - s ,  

A2~-I _< a + 2 r -  2, k + 2 - s  < r < k +  1, 

m If  a > k + 1, the module  d iagram of I+(a)  is a triangle, as given where a = - y .  

in Figure 9. 



Vol. 100, 1997 DEGENERATE PRINCIPAL SERIES 53 

W~(o,o) 

W~*(O,L) W~*(i,o ) 

W:(o.2) W~(1,1) W:(2,o) 

W:(o,k+~) W~f~,k) W:(~,l) W~(k+~,o) 

Figure 9. 

If 1 _< a _< k, then the module diagram of I+(a) is the triangle with its top 

k + 1 -  ~r rows deleted. For any integral a > 1, each of the irreducible constituents 

at the lowest row forms an irreducible submodule of I+(a), and only W*(0,k+l ) 

and W~(k+l,0) are unitary. If 1 < a < k + 1, then the irreducible constituents at 

the top rows are also unitary. 

If W~(s: ) is an irreducible constituent of I+(a), we let X(s ,  t) be the submodule 

of I+(a) generated by W*(s,t ). Specifically, we have 

W~(i,i). i > s ,  j > t  . 

The module diagram of X(s ,  t) is a subtriangle in the module diagram of I+(a). 

Note that W*(o,o ) is finite dimensional and X(O, O) = I+(a). 

THEOREM 4.13: Assume that n is odd. Let m be an integer such that m > n + 3  

and m - 0 (mod 4). If  p and q are nonnegative even integers such that p+q = m, 

then we have 

(~p,q) = X(s ,  t), 

and 

Qp,q ~ w~( 

~here ~ -- ma× (0, ~+--~- ) and t -- max (0, ~ ) .  In p~ticula~, we have: 

(i) ~(f~p,q) = I+(a) i f  and only if  Qp,q is finite dimensional i f  and only i f  

p>_n+ l andq>_n+ l. 
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(ii) f~P'q is irreducible i f  and only i f  pq = O. 

(iii) QP'q is unitary i f  and only i f  either pq = 0 or p, q < n + 1. 

Finally we consider fF'q(1). By Corollary 3.2, if n is even, and p and q are 

nonnegative even integers such that p + q = n, then 

f ~ P ' q ( 1 ) ~ I + ( ~ ) .  

We first assume that n = 0(rood 4). Then the module diagram for I+(½) is given 

in Figure 10. 

L~+~,k+~ Lk,~ Lu_~,~_~ 

Lk-I-l,k Lk,k-1 

L2,2 LI~I 

L2,1 

Figure 10. 

THEOREM 4.14: Let  n = 0 (mod 4). I f  p is an odd integer such that  1 <_ p <_ 

n - 1, then 
+(1 ¢ (tiP's-P(1)) = L 2~+3,~_~ _C I 7)" 

The set {~/, (~v'n-P(1)) : 1 <_ p < n -  l ,  p odd} exhausts aH the irreducible unitary 

submodules of  I + (½) 

Theorems 4.3 and 4.14 reveal some interesting phenomenon. By Theorem 

4.3, if p and q are positive odd integers such that p + q = n + 2, we also have 

+(1 (~t ~+1'1) i ( k  + 1, k + 1) and (~ (~'~P'q) ~ I 7)" More precisely, we have cp = 

(f~x,n+l) = M(1,1). On the other hand, ¢ (f~-1,1(1)) = Lk+l,k. Hence 

we conclude that  f~n-l,l(1) is isomorphic to the unique irreducible submodule 

of f~+i,x, and ~21"~-1(1) is isomorphic to the unique irreducible submodule of 

f21'~+1. Similarly, for 3 < p < n -  3, since ~(f~p,n+2-p) = M (v+l ,p+a) ,  

~P'n-P(1) and ~P-2'n-p+2(1) are isomorphic to the two irreducible submodules 
in f~p,n+2-p. 

THEOREM 4.15: Suppose that  n = 0 (rood 4). 

(i) ~n- l ' l (1 )  is isomorphic to the unique irreducible submodule  of  fY ~+1,1. 
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(ii) I f  p is an odd integer such that 3 < p <_ n -  3, then f~P,~-P(1) and 

~P-2"n--p+2(I) are isomorphic to the two irreducible submodules of 

12 p'~ + 2- p, respectively. 

(iii) fP '~- l (1)  is isomorphic to the unique irreducible submodule of f~1,~+1. 

~n-{-1,1 ~p,n-l-2--q ~'~ 1 ,n..{- 1 

f~n-l,1 (1) f F , ~ - ' ( 1 )  aP-2,n-P+2(l )  a l , n - l ( 1 )  

Figure 11. 

If n - 2 (mod 4), then the module diagram for I+(½) is given in Figure 12. 

L~, 1 L~,~ L,~+~,j: 

Figure 12. 

THEOREM 4.16: Let n = 2 (mod 4). I fp  is an even integer such that 0 <_ p <_ n, 

then 

(~P'n-P(1)) = L*~2_~+1,~2_~+ 1 C i+(1~ 

The set {¢ (DP,n-P(1)) : 0 _< p _< n p even} exhausts all the irreducible unitary 

submodules of I + (½). 

We note by Theorem 4.6 that 

~(~,+2,o) = M'(1, 1) = L~, 1 = ¢ (gP'°(1)), 

and 

~(gt °'n+~) = M'(k  + 1, k + 1) = L~+l,k+ 1 = ¢ (~°'n(1)),  

and for 2 < p < n, p even, we have 
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which has two irreducible submodules isomorphic to f~P"~-v(1) and 

f~P-2'~-P+2(1), respectively (see Figure 13). 

THEOREM 4.17: Suppose that n ~ 2 (mod 4). 

(i) f~n'°(1) is isomorphic to f~,~+2,o. 

(ii) I f  p is an even integer such that 2 <_ p <_ n - 2, then Qv'n-P(1) and 

f~v-2'n-P+2(1) are isomorphic to the two irreducible submodules of 

f~p,n+2-p, respectively. 

(iii) f~°,n(1) is isomorphic to f~o,n+2. 

~"'°(1) = a n+2.° a"-2'2(1) a"" - ' (1 )  an-2"-'+2(1) 

+ + 
f12,n-2(1 ) f~o,n(1 ) = ~o,~+2 

Figure 13. 

5. Gelfand-Kiri l lov  d imension of irreducible const i tuents  

Let V be an irreducible constituent of I+(a)  and V]K -- )-']~R P~ where R C_ A +. 

By estimating the sum 

Z dim(pAl' 
;~ER 

I~l+...+l;~,l=l 

as a polynomial in l as in section 6 of [LZ] for the case of U(n, n), we derive the 

following. 

THEOREM 5.1: Let V be an irreducible constituent of  I+(cr) and let N ( V )  be 

an integer defined in the following table. 
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n a V N ( V )  

n = 2k n 

n = 2 k + l  

1 a E ~ + Z  

a - k  

(mod 2) 

L~,b or L ~,b 

with a -  b = O, 1 

L,,b or L*b n - -  2(a - -  b -  1) 

with a - b > 2 

n - 2(b - a) L~,b or L*b 

with b - a > 1 

Ra(s,t) or R*(s,t ) 

with s + t : k 

n 

R~(~,t) or R*(s,t) 2(s + t + 1) 

with 0 < s + t < l,: 

Uj for O <_ j <_ k I~ 
r .  

a = k + 1 ~( .~, t )  o r  ~/~a(s,t) 7~' 

(rood 2) with s + t = k + 1 

W~(s,t) or W*(~,t ) 2(s + t) 

with 0 <_ s + t <_ k 

Fj for O <_ j <_ k + l  n 

Then the Gelfand-Kiril lov dimension o f  V is equal to N ( V ) ( n  N(~.2)-I ). 

1 ~ and [~r] - k (nlod 2), the Thus,  for example, if n = 2k, a C ~ + Z, a > 5, 

irreducible consti tuents of I+(a)  are Lab with - 1  < b - a <_ min([a] ,k) .  In 

the lowest, row of the module diagram of I+(cr), where b - a = - 1 ,  the G-K 
n ( n + l )  dimension of each of the k constituents is ~ , and in the next higher level 

(where b - a  = 0), the G-K dimension for the k + 1 consti tuents remains the same. 
1 Further  up the G-K dimensions of each level will strictly decrease. If  a _> k + 3'  

then the G-K dimension of the consti tuents in all the level will take the values 

N ( n -  N - 1 ) , w h e r e N = n , n , n - 2 ,  n - 4 ,  . , 2 ,0 .  
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