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ABSTRACT

Following our previous paper [LZ] which deals with the group U(n,n},
we study the structure of certain Howe quotients QP> and 279(1) which
are natural Sp(2n, R) modules arising from the Oscillator representation
associated with the dual pair (O(p,q), Sp(2n,R)), by embedding them
into the degenerate principal series representations of Sp(2n, R) studied
in [L2].

1. Introduction

In an earlier paper [LZ], we consider the dual pair (U(p,q),U(n,n)) C
Sp(4(p + ¢)n,R) and examine the relationship between Howe quotients which
correspond to determinant characters of U(p,q) and irreducible constituents of
the degenerate principal series representations of U(n,n) studied in [L1]. In this
paper we shall do the same for the dual pair (H,G) = (O(p, q),Sp(2n,R)) C
Sp(2n(p + q),R). More precisely we let V = RP™ and V" be the direct
sum of n copies of V. As usual, we let gp(2n(p + ¢q),R) be the unique non-
trivial double cover of Sp(2n(p + ¢),R) and S(V™) the Schwartz space of V™.
Then gp(Qn(p + ¢,R) acts on (V™) via the Oscillator representation w. Let
S C 8§(V™) be the space of Schwartz functions which correspond to polynomi-
als in the Fock model of w. Let 79 be the maximal quotient of S which is
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trivial as an (o(p,q), L) module, where L & O(p) x O(q) is a maximal com-
pact subgroup of O(p,q). We also let QP%(1) be the maximal quotient of .S on
which (o(p, q), L) acts by the representation which corresponds to the determi-
nant character ¢ — det g of O(p, ¢). It turns out that under certain conditions,
these Howe quotients QP9 and QP9(1) can be embedded into the following de-
generate series {I*(c): o € C} of Sp(2n,R) studied in [L2). Let P = M N be
the maximal parabolic subgroup of Sp(2n, R) where

M = {ma=<g (agl)t):aeGL(n,R)},
{nb=<(1) ll)):beM(n,R),b=bt}.

For each ¢ € C, we let x¥: P — C* be the characters given by

N

£ (mans) = (deta)®  if deta >0,
Xo \Malt) =\ |detal|® if deta <0,

and let I* (o) be the corresponding induced representations. The representation
spaces for I* (o) are respectively

{f € C=(Sp(2n,R)): f(pg) = 6(p) xZ(p)f(g), g € Sp(2n,R),p € P},

where § is the modular function for P, and on which Sp(2n,R) acts by right
translation.

COROLLARY 3.2: Let p, = "—Zﬁ,i We have G-equivariant embeddings

1"“’(-"%‘Z — pn)y, ifp—g=0(mod4),

. QP4
v ‘_){ I=(B2 —p,), ifp—q=2(mod4),

if p+ q is even, and
I=(Y), ifp—q=0(mod4), p+qg=n
. QP 2)s ) )
v ()‘—){I*'(%), ifp—q=2(mod4), p+q=n,
if n is even.

The embedding ¢ is first given by Kudla and Rallis in [KR1]. In the same
paper, they also prove that I*(g) are irreducible if and only if o & p, + Z.

Since all of QP9, QP+4(1) and I*(0) are K-multiplicity free, where K & U(n)
is a maximal compact subgroup of G, we can easily identify the images of (3P4
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and QP9(1) in I*(0). In particular we shall show that some of the irreducible
unitary submodules of /% () can be identified with certain Howe quotients QP9
or P9(1). Since the module structure of I* () has been completely determined
in [L2], we can deduce the module structure of QP9 and P9(1). In particular we
can describe a composition series of these 77 when it is reducible, and determine
how the different QP'?’s with p + ¢ fixed intersect each other in I*(s). In this
paper we only consider Howe quotients which are embedded into 7* (o). Those
Howe quotients which are embedded into /= (o) can be studied in exactly the
same way, so we omit them. Here we highlight some of the results:

THEOREM: Let m be an even positive integer and 0 = 5 — pn,.
(1) If2 < m < n, then the set {p(QP9): p+¢ = m,p—q = 0(mod 4)} exhausts
all the irreducible unitary submodules of It (o).
(ii) Assume that n is odd and m = n + 1, so that o = 0.
(a) If n = 1(mod 4), then

I*(0) = P{e@"+'"?),1 < p < n, podd}

is the direct sum of “2—'1‘—1 irreducible unitary submodules.
(b) If n = 3(mod 4), then

It(0) = @{Lp(ﬂp’”"'l_”),o <p<n+1, peven}

is the direct sum of E:,té irreducible unitary submodules.

We remark that results in part (ii) are first given in {K]. This is related to an
earlier work of Kashiwara and Vergne [KV2] (see also [S]). Recall that if M is a
module for a group or an algebra, then the socle of M is the sum of all irreducible
submodules of M, and is written Soc (M) (see [GW]). The socle series of M is
the ascending chain

Soc ®(M) C Soc (M) C Soc (M) C ---
of submodules of M defined inductively by setting Soc 0(M ) =0and
Soc "t (M) /Soc " (M) = Soc (M /Soc "(M))

for any nonnegative integer 7. For m > n + 2 (so that o > 0), it can be shown
that each irreducible constituent in Soc ! (I'*+(0)) is either a Howe quotient or the
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intersection of two Howe quotients; and for j > 2, each irreducible constituent
in Soc 7 (I'*t(0)) is either the quotient of one Howe quotient by a submodule in
Soc /71 (I*(0)), or the quotient of the intersection of two Howe quotients by a
submodule in Soc #~! (I*(0)). More precise statements similar to Proposition
5.10 of [LZ] can be made using detailed results for the various cases given in sec-
tion 4. We shall leave them to the readers. Thus the reducibility of I* (o) is fully
accounted for by these Howe quotients. This gives the archimedean analog of the
results of Kudla and Rallis on ramified degenerate principal series representations
of symplectic groups over p-adic field ((KR2]).

On the other hand, the local Howe duality principle [H1] tells us that the
representation 279 always has a unique irreducible quotient @P¢. Notice that
QP is the representation 6(1) associated to the trivial representation of H =
O(p, q) via the local theta correspondence. By identifying Q¢ with an irreducible

constituent of I*(c), we obtain the following.

THEOREM: Suppose that p and q are nonnegative integers such that p+q is even
and p — q = O(mod 4). Then QP is unitary if and only if either pg = 0 or both
pg<n+1.

The fact that QP? is unitary for p + g < n also follows from the more general
results of Li on stable dual pairs [Li].

When n is even, our results also reveal a very interesting phenomenon in I+ (%)
that certain Howe quotients corresponding to the determinant character embed
as irreducible submodules of certain Howe quotients which correspond to the

trivial representation.

THEOREM: Assume n is even. Then every irreducible constituent of I +(%) is
unitary. The socle length of I +(%) is equal to two, and the set

{v(@9(1):p+g=n,p—g=2(mod 4)}

exhausts all the irreducible unitary submodules of I*(3).
(a) If n = 0(mod 4) and p and g are odd integers such that p+q = n+2, then
we also have embeddings ¢: QP9 — I +(%) Moreover, we have:
(i) Q~-L1(1) is isomorphic to the unique irreducible submodule
of QrtLl,
(ii) If p is an odd integer such that 3 < p < n — 3, then QP"~?(1) and
QP—2n-P+2(1) are isomorphic to the two irreducible submodules of
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QPnt2-P respectively.
(iii) QU~1(1) is isomorphic to the unique irreducible submodule
of QLn+l,
(b) If n = 2(mod 4) and p and g are even integers such that p +q = n + 2,
then we also have embeddings ¢: Q7 — I*(1). Moreover we have:
(i) Q™°(1) is isomorphic to Q™29
(i) If p is an even integer such that 2 < p < n — 2, then Q*"~P(1) and
QP~27-P+2(1) are isomorphic to the two irreducible submodules of
QP+2-P respectively.

(iii) Q%" (1) is isomorphic to Q07 +2.

When It (o) is reducible, the sizes of all irreducible constituents, as measured
by their Gelfand-Kirillov dimension, are also determined. Just as in the case
of U{n,n) [LZ], the size of each constituent can be read off from its position in
the module diagram of 7(¢). But a new phenomenon emerges for Sp(2n,R) in
that there can be two rows in the module diagram which has the maximal G-K
dimension 11("2—+1) For example this is the case in I*(1) for n even. The detailed
result is given in section 5.

The study of Howe quotients was pioneered by Kudla and Rallis ([KR1] in
the archimedean case and [KR2] in the p-adic case), motivated by their work
on the extension of the Siegel-Weil formula. In the p-adic case there are only
two Howe quotients corresponding to two quadratic spaces (with different Hasse
invariants) of a given even dimension and given a discriminant. These two Howe
quotients are embedded into the same ramified degenerate series of Sp(2n,R),
and their relationships are completely understood [KR2]. In the real case that we
are considering, some results have already been obtained by Kudla and Rallis in
[KR1]. For example, they have determined which of the {27%’s are irreducible and
which of the QP:%’s are finite dimensional. In fact for n = 2, complete structural
results have been stated and used in their work with Soudry [KRS]. One of our
main purpose in this paper is to describe these results for any n and in any range
of p, q as explicitly as possible. We hope they will prove to be useful in the further

study of Eisenstein series and of L-functions for symplectic groups.

ACKNOWLEDGEMENT: The authors would like to thank the referee for pointing
out an inconsistency between the K-types of QP9 and $*(V"*)¥ in an earlier

version (see section 2).
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2. K-types of 977 and Qri(1)

Consider the reductive dual pair
(H,G) = (0(p,q),Sp(2n, R)) C Sp(2n(p + q), R).

For any subgroup E of Sp(2n(p+¢), R), E shall denote the preimage of E under
the canonical projection Sp(2n(p + ¢), R) — Sp(2n(p + ¢), R). Let V = RP*¢
and let V™ be the direct sum of n copies of V. Then gp(Zn(p + ¢),R) acts on
the space S(V™) of Schwartz functions on V" via the Oscillator representation
w. By twisting w with a character, H will act linearly on S(V"):

wh)- flor,...,v,) = f(h! vy, ..o b7 o), (REH, (viy...,v,) €V

We shall assume that this has been done from now on.

Let § C 8(V™) be the space of Schwartz functions which correspond to poly-
nomials in the Fock model. Then S is naturally a (o(p,q),O(p) x O(q)) x
(sp(2n,R), U (n)) module. Recall that QP? is the maximal quotient of S which is
trivial as an (o(p, q), O(p) x O(q)) module, and 2P?(1) is the maximal quotient
of S on which (o(p, q), O(p) x O(gq)) acts by the representation which corresponds
to the determinant character h — det h of O(p, ¢). The purpose of this section
is to decompose 277 and QP'9(1) into direct sums of K-types. As in the U(n,n)
case [LZ], the K -types in QP9 and QP9(1) are precisely the contragradient repre-
sentations of those which occur in certain spaces of tempered distributions. We
omit all the proofs in this section because they follow the same line of arguments
used in the proofs for the corresponding results in the U(n,n) case, which are
given in sections 2 and 3 of [LZ].

We now fix some notations. Recall that K = U(n) is a maximal compact
subgroup of Sp(2n,R). Denote by A} the set of all dominant integral weights
for U(n) with respect to the Borel subalgebra b of upper triangular matrices.
A can be identified in the usual way with the set of all n-tuples of integers
A = (A1, A9y ey An) such that Ay > Ag > -+ > A, Foreach A € A, p* shall
denote a copy of the irreducible representation of U(n) with highest weight A.

For convenience, we also let

Note that 1, is the highest weight of the determinant character of U(n). In a
similar way, every irreducible representation of K= ﬁ(n) is of the form p*, but
the components of A can be half integers.
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Now w induces an action of §p(2n(p+ g), R) on the space $*(V") of tempered
distributions on V* in the usual way. Let S*(V")¥ be the space of H-invariant
tempered distributions on V". Kudla and Rallis showed in [KR1] that it is
generated as a G module by the Dirac distribution. The second-named author
later generalized their result to any classical group H of hermitian or skew-
hermitian type acting on the direct sum of n-copies of the standard module V,

using a different and more direct approach ([Zhu).

THEOREM 2.1 ([KR1], see also [Zhu]):
(a) S*(V™)H is the closed span of the set {w(g)é|g € G}. Here § is the Dirac
distribution at the origin of V™. R
(b) The multiplicity of T in S*(V™)H is at most one for any 7 € K. It is equal
to one if and only if the contragradient representation of T is isomorphic to
pr, T = p*, where
—4q
A= 1)—2—171 + (a17“'7at707"'ﬂ07—gs7‘"’—ﬁ1)7
and «;, 3; are all even integers satisfying
ap>-->0; >0, By >--2 0,20, t<min(p,n),s<min(qg,n).
Moreover the projection of § to such a K -type Is not zero.

Remark: Theorem I of [Zhu] states that the K-types in S*(V™)H are of the
form T = p*, where X is given above. This is incorrect. A correct proof can be
obtained by making only a minor change in the original proof.

Next we let (2*)79 (1) be the space of tempered distributions consisting of
those ® € §*(V™) such that

h-® = (deth)®, he H.

Let X = (xij)1<i<p+q,1<j<n be the natural coordinates of V" = M, »(R). For
1<t <min(p+¢,n), let

o e 8
8z, Ozi2 51(13911
Oy = 0y(X)=det | Fza1  z22 T Bey
0 o ... 8
Oy Ozeo Ozt

Assume that p + ¢ < n. Then one can verify that for h € H, we have

b+ (Opsq6) = (det h)(Bpsqd).
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Consequently the tempered distribution D given by

= Op4qf
is in the space (2*)™7 (1). We have the following description of (Q*)"?(1).

THEOREM 2.2: (Q2*)7?(1) is nontrivial if and only ifp+q < n. Ifp+q < n,
then
(a) (*)"(1) is the closed span of the set {w(g)D|g € G}.
(b) The multiplicity of v in Q*(1) is at most one for any T € i It is equal
to one if and only if the contragradient module of T is isomorphic to p*,

™ 2 p*, where

)\—p;l +(a1, . ,ap7 0 ﬂqa 181)1

and «;, 3; are all odd integers satisfying
ayz--2ap 21, IBIEZﬂqZI

Moreover the projection of D to such a K -type is not zero.

We remark that Przebinda has proved that (2*)7?(1) is trivial if p+ ¢ > n
([P ~

Notice that there is a non-degenerate G-equivalent pairing between 279 (resp.
QP9(1)) and S*(V™)H (resp. (Q2*)P9 (1)), so that their K-types are contragradi-
ent to each other.
PRrOPOSITION 2.3 ([KR1]): The K-types in QP9 are those representations of the

form T = p*, where
/\=p—;—qln+(al, 504, 0,...,0,—85,..., 1),
and «;, B; are even integers such that
012220, f12-+2p 20, t<min(p,n),s< min(gn).

Moreover each such K -type occurs with multiplicity one.

PROPOSITION 2.4: QP+9(1) is nonempty if and only if p+q < n. If p+q < n,
then the K -types in QP9(1) are those representations of the form 1 = p*, where

p
/\Zqu +(a11 7ap701'-',Oa_ﬁqa”'a_ﬁl)a
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and «;, (3; are odd integers such that
alZ"'ZapZL [3122@121

Moreover each such I:'-type occurs with multiplicity one.

The proofs for Theorems 2.1, 2.2 and Propositions 2.3, 2.4 are similar to that
of Theorems 3.1, 3.4, Propositions 2.1 and 2.2 and Corollary 3.11 of [LZ]. The
strategy is as follows: First we show that the K -types of "9 and QP-9(1) must
be of the forms given in Propositions 2.3 and 2.4 and with multiplicity at most
one. Then we show that the contragradient representations of those R’-types
indeed occur in S*(V™)H and (2*)7*7 (1) by showing that the Dirac distribution

or D has nonzero projections there.

3. Embedding of Howe quotients into degenerate principal series

It is shown in [KR1] that the Howe quotient Q277 can be embedded into a certain
degenerate principal series representation of gp(Zn, R). We shall show that for
p+q =mn, QP9(1) can be embedded in a similar way. Further if p+q is even, QP9
and QP9(1) can in fact be embedded into the degenerate series {I*(c): 0 € C}
of Sp(2n, R) studied in [L2]. Thus we can use the results in [L2] to deduce the
structure of these Howe's quotients by identifying their images in the degenerate
series.

We shall identify Sp = Sp(2(p + ¢)n, R) as a set with

{(g9,¢): 9 €Sp(2(p+¢)n,R), e==%1}.

We recall that G = Sp(2n,R), and G = Sp(2n, R) is the preimage of G in §f)
We also recall the parabolic subgroup P = M N of Sp(2n,R). Then P = MN
where

M= {(Ma,e): mgeM, e==+1}, N= {{np,1): ny € N}.
Let 1 be the following character of M of order 4:

1 if deta >0,
1 if deta < 0.

X1(me,e)=¢ {
For o« € Z/4Z, 0 € C, let

Xal0){mg, €) = |detal”X1(mg, €)®
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and extend trivially on N. Let I,(c) = Indgia (o) be the corresponding induced
representation of G. The representation space for fa(a) is

{f € C=(G): £(39) = 65(P) xa(0) (D) f(3). V§ € G,F € P}

and on which G acts by right translation. Here é5 is the modular function of the
group P and is given by 65(p) = | det al?n for p = (ma,€)(np, 1) and p, = ol

Now recall the reductive dual pair (H,G) = (O(p,q),Sp(2n,R)) C
Sp(2(p + ¢)n, R), and the action of Sp(2(p + ¢)n, R) on S(V™) via the Oscil-
lator representation w. We can identify P with the subgroup of Sp(2n, R) fixing
V™ 2 Mpiqn(R). Then we have

[w((ma, ) £1(2) = Xa(B)((Ma, €)) f(za),
[w((np, 1)) f](x) = eFitrdmacte) f(g),

for (my,e) € M, (ny,1) € N, [ € S(Mpyqn(R)), z € Mppgn(R). Here
8= 7%9, and o = p — ¢ (mod 4). It follows that

w(P) -6 =Xa(B)"' P, PeP.

If we assume further that p + ¢ = n, then direct computations show that for
ﬁ: (ma’ E)(le, 1)7

w(p) - Optqgb = Xa(8)™*(P)(det a)-lap+qé = Xa+2(8+ 1)_1(@3p+q5-

Let Dbe § € S*(V™)H or 8,146 € (Q*)P? (1) for p+q = n. For any f € S(V™),
we consider the function

Ds(9) = DW@)S), jed.
Then since D(w(pg) f) = (w(p)~*D)(w(g)f), the transformation properties of D

under P implies that ’l~7f is in the space of the induced representation fa(a),
where

(1)0=1—’%‘1——pn,a5p—q(mod4) if D=é,
o P—}‘l—kl—pn:%, a=p—q+2(mod4) f D=0y p+g=n.

Consequently we obtain a map

SV — Iu(o)
f — 5f.
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We now restrict the map to the space § C S(V"). Because of the way Howe’s
quotients QP-7 and QP-7(1) are defined and the transformation property of D, this
restriction map factors through QP and QP9(1), respectively. We shall use ¢
(respectively ) to denote this map from QP¢ (respectively QP4(1)) to Ta(a).

THEOREM 3.1: The maps
@ Q7 5 I, (0)
v: P91 - L), pt+a=n,
are é-equivariant embeddings. Here o and « are as in equation (1).

The embedding ¢ is first given by Kudla and Rallis in [KR1]. For the
embedding 9, the proof is similar to that of Theorem 4.5 of [LZ].

If p + q is even, then w|y factors through G. This induces an action of G on
S(V™). We shall abuse notations and denote this action of G also by w. For each
f € S(V"), we let Dy be the function on G given by

Dy(g) = D(w(g)f), g9€G.

Let x*(0), x~ (o) be the characters of P given by x*(c) = Xo(c)|p, and x (o) =
X2(o)|p- Thus we have

. _ | (deta)?, if deta >0,
x=(o)(p) —{ +|detal?, if deta <0,

for p = man, € P. Further let I¥(0) = Ind5x* (o) be the corresponding
(normalized) induced representation of G. Then we have

COROLLARY 3.2: Suppose that p + q is even. Then the map
f— Dy

induces the following G-equivariant embeddings:

@ QP,QH{ I+(%Q—Pn)7 if p— ¢ = 0(mod4),
I~(B2 —p,), ifp-q=2(mod4),
I=(}), ifp—q=0(mod4), p+qg=n
QP91 2h , :
v ( )L’{ I*(}), ifp-g=2(modd), p+q=n.
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4. The structure of Q77 and QP9(1)

In this section we shall describe the images of QP and P9(1) under the

embeddings

re & (B _ 5 ) p— g =0 (mod 4),
Q”’q(l)&l"' (1), p—q=0(mod4), p+q=n is even,

given in Corollary 3.2. The other embeddings given in Corollary 3.2 can be
studied in a similar way, and we leave them to the readers. Using the results in
[L2], we are able to deduce the module structure of QP9 and QP9(1). Since all
these representations are K-multiplicity free, the images of 27¢ and QP9(1) are
given by the direct sums of A-types whose highest weights are those occurring
in QP9 and QP9(1), respectively. Hence to prove our results in this section we
only need to verify carefully that the spaces involved contain exactly the same
K -types. Since such arguments are elementary and are similar to those used in
[LZ], we shall omit all the proofs.

We shall first consider QP9. Let m be a fixed positive even integer. By
Corollary 3.2, for every pair (p,g) of nonnegative integers such that p+¢ =m
and p — g = 0 (mod 4), we have

ar1 & 1t (o)

where 0 = 2 — p,. We need to consider two cases, according to whether n is

even or odd.

CASE: n even. We first assume that m = 2 (mod 4). Let k = 3. Then p, =
mtl=of+lando=2—k—j=k-3—2k+ 3, sothat [o] = k (mod 2).
Let AT = {d = (A1, An): A1 2 A2 > -+ > Ay, is even Vj}. For 0 < a,b < k,
let Lqas be the set of A € A} which satisfy

Aogpo1 2 —(a+n—-2r+1), 1<r<a—1,
Aoy < —(a+n—-2r+1), a<r <k,

Aogr > a+2r—1, 1<r<b-1,
Aoy Ca+2r-—1, b<r<k,
where & = —3. If L, is non-empty then the direct sum of all A-types whose

highest weights lie in L, forms an irreducible constituent of I (o). For conve-
nience, we also denote this subspace by Lg,. Note that if Ly ;41 # 0, then it is

the only finite dimensional irreducible constituent.



Vol. 100, 1997 DEGENERATE PRINCIPAL SERIES 41

PRroPOSITION 4.1 (cf. Theorem 5.2 of [L2]): Let n = 2k be a positive even
integer, and let o0 € 1 + Z be such that [0] = k (mod 2).
(i) Ifo < —1, then

I*(o) = @{Lub: 0<a-b<r},

where r; = min([|lo|] + 1, k), and the socle series (see page 31) of I (o) is
given by

@P{Lap: m—j+1<a-b<r} 1<j<rg,

Soc /(I*(0)) = { I*(0) jzri+l

Moreover, a constituent Ly, of It (o) is unitarizable if and only if a = b or
—k+3<o<—janda-b=ry.
(i) If o > 4, then

I*(o) = @{Lab: —1<b—-a<r},
where ro = min([o}, k), and the socle series of I*(c) is given by

@{Lap: —1<b-a<j-2} 1<j<m+1,

Soc /(I*(a)) :{ I*(0) j>ra+2.

Moreover, a constituent L, of I (o) is unitarizable if and only ifa = b+1

oz‘%ﬁagk+%andb~a:7‘g.

SuBcASE: m = 2 (mod 4), 2 < m < n. In this case, we have [o] = k (mod 2)
and —k + % <o < —%. Each of the irreducible constituent L., such that
a—b=—-2+k+1 forms an irreducible unitary submodule of I* (o) and this
accounts for all the irreducible submodules of I* (o). It turns out that each of
these submodules can be identified with some Howe quotient 279. Note that if
p and ¢ are nonnegative integers such that p + ¢ = m, then p — ¢ = 0 (mod 4) if

and only if both p and ¢ are odd.

THEOREM 4.2: Assume that n is even. Let 2<m < n and m = 2(mod 4). Ifp
and q are positive odd integers such that p + ¢ = m, then

m
P(@P9) = Lozgss ps C I* (3 - pn) :

m

Hence p(QP9) is an irreducible unitary submodule of IT (2 — p,). Moreover,
the set {©(4): p+q = m, p and q are odd and positive} exhausts all the
irreducible unitary submodules of It (% — p,).
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The module diagram (see [A] or §7 of [L1]) of I*(0) for —k+ 3 <o < -1 s
given in Figure 1 below. Thus we see that the Howe quotients QP:? in Theorem

4.2 are mapped to the lowest row of the module diagram.

Lietiker Li .k Li—1,k-1 : : : Loy Lia
Lit1k Li k-1 : : : Ly
Lis1 kt1-ry Lek—ry 7 " Lrjg1a
Figure 1.

We consider an example. Let n = 8 and m = 6. Then (5,1), (3,3) and (5,1)
are all the pairs (p,q) of odd positive integers such that p + ¢ = 6. For these

6 9 3
pa (2 2y =+ [_2).
0 _.1(2 2) 1(2)

By Theorem 4.2, we have ¢(Q5!) = Ls3, p(Q%3) = Lygq, o(QM3) = L3;1 (see

Figure 2 below).

L5.3 L4,2 La.l

T

pairs (p, q), we have

QS,I Q3,3 QI,S
Figure 2.
Here and after, a black circle represents a unitary constituent.
SUBCASE: m = 2(mod 4), m > n+2. In this case, ¢ > 22 — 2l = 1 If

o > k+3, then the module diagram of I* (o) is given in Figure 3. If 3 <o <k-3,
then the diagram of It (o) is the configuration obtained by deleting the top k—[o]

rows from Figure 3.
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If Ls: is a constituent of I*(s), we let M(s,t) be the submodule of I* (o)

generated by L, (see Figure 4 below). Specifically,

M(s,t) = @{Lap: a>s, bt}

In particular, if Ly x4y # @, then M(1,k+ 1) = I'*t(0).

Liks1

Lo kg1 L

Li k41 Lioa,k ’ ’ : Las
Lit1,k+1 L,k : : : L3,z

Liyik Ly k-1 ’ : ’ L3

Figure 3.
L,

Lia

Logpr / ; : N
M(s,k M(s,t)
/7

Ly,
M1,
V4

Figure 4.
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THEOREM 4.3: Assume that n = 2k is even. Let m be an even integer such that
m >n+2 and m =2 (mod 4). If p and ¢ are odd integers such that p+q = m,
then

@ (QP9) = M(s,t) C TT (? —pn)

and

QP9 = Ly,

where

— 3 1
s=max(¥—,1), t:min(z—);—,lv}—l).

In particular, we have:

(i) o(¥9) = I*(0) if and only if @9 is finite dimensional if and only if
p>n+landg>n+1.

(ii) QP9 is reducible.

(ii) QP? is unitary if and only ifp,g <n+1.

We illustrate this theorem by the following example. Let n = 8 and m = 14.
There are 7 pairs of odd positive integers (p,q) such that p + ¢ = 14; namely
(13,1), (11,3), (9,5), (7,7), (5,9), (3,11) and (1,13). For such pairs (p,q), we

have
14 9 5
pa (2 Yo+ (2).
wesr (3-3)=1 ()

By Theorem 4.3, we have ¢ (Q'31) = M(5,5), ¢ (21®%) = M(4,5), ¢ (@)
= M(3,5), ¢ (27) = M(2,4), ¢ (25) = M(1,3),  (B4) = M(1,2), and
¢ (Q13) = M(1,1). We indicate the images of QP9 in the module diagram of
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I*(5/2) in Figure 5.
QU3 Q31

N\ y
f N

Q131 Qb3

Q93 Q77

Figure 5.

Next we consider the case when m = 0 (mod 4). In this case 0 = T —k — 3=
k+ 3+ % —2k—2sothat [} = k+1 (mod 2). As pointed out in [L2}, the
structure of I (o) in this case can be deduced from that of I*t(~c), which is
contragradient to [*(g). Since [-o] = k (mod 2), the structure of I*(—0) is
given in Proposition 4.1. We shall now describe the structure of 7+ (o). Suppose

L;; is a constituent of I*(~g). We let
L:j = {/\ € A:Z A* [S L”}

Here if A = (A1, ..., An), then A* = (=A,, —An-1,..., —A1). Explicitly A € Ly if
and only if

A1 >a+2r—2, 1<r<k-j+1,

Arc1 <a+2r—2, k—j+2<r<k,

Aop 2> —(a+n—2r), 1<r<k-i+1,

Aor < ~(a+n-—-2r), k—i+2<r<k,
where @ = — . As before we identify L}; with the subspace of I *(o) which is
the direct sum of all the K-types whose highest weights are contained in L.
Then Lj; is an irreducible constituent of I*(c) and I*(0) = ®{L};: L # 0}.
We state the following proposition for the convenience of the readers.

PROPOSITION 4.4: Let n = 2k be an even integer, and let o € % + Z be such
that [0] = k + 1 (mod 2).
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(i) Ifo > 3, then
It(o) = @{L;b: 0<a—-b<r}

where 71 = min([o] + 1, k), and the socle series of I* (o) is given by

; L}W: 0<a-b<k-1}, 1<j<r,
SOC](FL(U)):{ ?‘Ea)b } j>r1+11.

ii) Ifo < —1, then
2

If(o)=@P{Ly: —1<b-a<m}
where ro = min([|o|], k), and the socle series of I () is given by

Soc 7 (I*(0)) =
DLy ra—j+1<b-a<r}, 1<j<r+l,
I+(0'), j>re+2.
Note that if m = 0 (mod 4) and p+ ¢ = m, then p — ¢ = 0 (mod 4) if and only

if both p and ¢ are even.
SUBCASE: m =0 (mod 4), 4 <m < n. Note that in this case 0 < —3.

THEOREM 4.5: Assume that n is even. Let m be an integer such that4 < m < n
and m = 0 (mod 4). Then for any positive even integers p and q such that
p+ g = m, we have

m
P(QP9) = Lioga n=pra C It (-2— - pn) ‘

Hence each o(QP?) is irreducible and unitary. Moreover, the set {p(QP9): p +
g = m, p and q are even and nonnegative} exhausts all the irreducible unitary
submodules o It (% — pp).

SuBcasE: m =0 (mod 4), m > n+2. In this case 0 > 1. Let L}; be an irre-
ducible constituent of I*(c). Let M’(, j) be the submodule of I* (o) generated
by Lj;. Then

M'(4,5) = ®{Ly: a<i, b> g}
THEOREM 4.6: Assume that n = 2k is even. Let m be an integer such that
m > n+2 and m = 0 (mod 4). Then for any pair of positive even integers p and
q such that p+ q¢ = m, we have

© (P9) = M'(s,1),
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and
QP L*

s,t

where

2 - 2
s:min(%,k+1>, andt:max(n—gi—J).

In particular, we have
(i) p(S¥P9) = I* (o) if and only if p > n and ¢ > n.
(it) QP9 is irreducible if and only if pg = 0.
(iii) Q™7 is not finite dimensional.

(iv) QP is unitary if and only if either pg =0 or p, ¢ < n.

CASE: n odd. Let n = 2k + 1. Again we shall first consider the case when
m = 2 (mod 4). Note that in this case we have 0 = &t — k — 1 = k (mod 2).

SUBCASE: 2<m<n—1,m=2(mod4). In thiscase we have -k <o < -1
For nonnegative integers s and ¢ such that s +t < k, we let Ry(; ) be the set of
A € A} which satisfy

Ao > a+2r—1, 1<r<s,
—(a+n—-2r)<d,<a+2r—-1, s+1<r<k—t,
Agr < —(a+n — 2r), k-t+1<r <k,

where @ = —m/2. If Ry, ¢y # 0, then the direct sum of all K-types whose highest
weights lie in R,(, ;) form an irreducible constituent of 7 *(o) and we shall denote

this constituent also by R ). Notice that R, is not finite dimensional.

PROPOSITION 4.7 (cf. Theorem 5.4 of [L2]): Let n = 2k + 1 be an odd integer

and let o be a negative integer such that ¢ = k (mod 2). Then
It(o) = @{Ra(s,t): k-r<s+t<k},

where r = min(|o|, k), and the socle series of I*(c) is given by

Soc I(I*(0)) =
P{Rostyk—r<s+t<k—-r+j-1} 1<j<r,
(s.t)
I*(o) j>r+1.

Moreover, we have:
(i) For s and t such that s +t =k — 1, Ry, is an irreducible submodule of
I*(0);
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(ii) A constituent R, ) is unitarizable if and only if -k <o < —land s+t =
k+o.

THEOREM 4.8: Assume that n is odd. Let m be an integer such that 2 < m <
n—1 and m = 2 (mod 4). If p and q are odd integers such that p+ ¢ = m, then

m
PO = Ry(ezs sy €1 (5 = on).

Hence each ¢(QP9) is an irreducible unitary submodule of I'* (% — p,,). Moreover,
the set {@(Q2P9): p+ q = m, p and g are positive and odd} exhausts all the
irreducible unitary submodules of It (1;— - pn).

We now illustrate this theorem with an example. Let n = 9 and m = 6. If
(p, q) is one of the pairs (5,1), (3,3) and (1,5), then

QP9 It (g - 129> =I*(-2).

The module diagram of I*(—2) is given in Figure 6.

Ra(a,0) R.(3,1) R.(2.2) R,(1,3) R.(0,4)
R,(3,0) Ra2,1) R.(1,2) Ra(0.3)
Ra(2,0) R.1,1) Ra(0,2)
Figure 6.

By Theorem 4.8, we have ¢(%!) = Ry,0), ©(2%®) = Ra1,1), and o(Q1%)
= Rq0,2)- Thus @51, 933 and Q5 are mapped to the lowest row in the module
diagram of I*(-2).

SUBCASE: m =n+ 1, m =2 (mod 4). In this case, n =1 (mod 4) and ¢ = 0.
Note that I7(0) is on the unitary axis. In fact, by Theorem 5.5 of [L2], we have
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where for each 0 < j < k, U; is the direct sum of all A'-types whose highest

weights lie in the set
(A€ AF: Nyjya < —k+2j < Mgj}
Each U; is an irreducible unitary submodule of I*(0).

THEOREM 4.9: If n = 1 (mod 4) and if p and q are odd integers such that
p+qg=mn+1, then

(PN =Upa.
2
In particular,

o= @{cp(ﬂp’"“_p): 1<p<n,podd}.

SuBCASE: m = 2(mod 4), m > n+ 3. In this case, we have ¢ > 1. As pointed
out in [L2], the structure of I* (o) can be deduced from the dual module I+ (—0).
We shall give now a brief summary on the structure of I*(¢) here. Suppose that

Ra(s,1) be an irreducible constituent of I*(~o). Let
;(S,!) = {A € A: /\* € Ra(s,t)}‘

Explicitly, A € R;(s,t} if and only if

Agr > —(a+n—2r), 1<r<t,
a+2r—-1< A < —(a+n—-2r), t+1<r<k-s,
Agr <+ 2r -1, k—s+1<r<k,

where o = —m/2. If 6 > k, the module diagram of I* (o) is a triangle, as given

in Figure 7.
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R0
Rio) R0
R;(OVZ) R;(l.l) R;(z,o)
R 0.k Ry k-1) : ) ) : ’ Rie-1n R k.0
Figure 7.

If 1 <o < k—1, then the module diagram of It (o) is the triangle with its top
k — o rows deleted. For any integral ¢ > 1, each of the irreducible constituents
at the lowest row forms an irreducible unitary submodule of I'*(¢). If 1 < 0 < k,
then the irreducible constituents at the top rows are also unitary.

If R}, . is an irreducible constituent of 1 *(o), we let S(s,t) be the submodule
of I*(o) generated by R, ). Specifically, we have

S(s,t) =P {R;(j‘k): i>s k> t}.

The module diagram of S(s,t) is a subtriangle in the module diagram of I*(c).
Note that S(0,0) = I'*t(0).

THEOREM 4.10: Assume that n is odd. Let m be an integer such that m > n+3
and m = 2 (mod 4). If p and ¢ are positive odd integers such that p+ ¢ = m,
then we have

@ (%) = 5(s,8) C I* (5 = pu),

and
Qp,q = Z(s,t)’

where s = max (0, %52) and t = max (0, ®7%). In particular, we have:
(i) p(92*9) =I*(g) if and only ifp > n and ¢ > n.
(i) QP9 is irreducible if and only if eithern =1o0rn > 1 and (p—1)(¢g—1) =0.
(iii) QP9 is not finite dimensional.
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(iv) QP9 is unitary if and only if p,q < n.

We now illustrate Theorem 4.10 with an example. Let n = 9 and m = 14. If
p and ¢ are odd integers such that p + ¢ = 14, then
14 10

QP9 — I+ (3 - 7) = I+(2)

Now by Theorem 4.10, we have ¢ (Q'*1) = 5(0,4), ¢ (2'1%) = 5(0,3), ¢ (2°5)
= 5(0,2), (2"7) = S(1,1), ¢ (25?) = 5(2,0), ¢ (Q>!) = $(3,0), and
¢ (Q113) = S(4,0). The images of these QP9 in the module diagram of I (2)

are given in Figure 8.
QL3 Q311

N |

13,1 1,13
Q Q
i

95 059

Figure 8.
Next we consider the case when m = 0 (mod 4). In thiscase 0 = 5 ~k—-1=
k+1 (mod 2).
SuBcASE: m =0 {mod 4), 4 <m <n —1. Under these assumptions, o < —1.
We recall the structure of I (o) in this case. For nonnegative integers s and ¢
such that s +t < k + 1, let W, be the set of all A € A which satisfy the

following conditions:

Agpo1 > a+2r ~2, 1<r<s,
—(a+n—-2r+1)< A1 <a+2r—-2, s+1<r<k—t+1,
Aoy < —(@+n—-2r+1), k—-t+2<r<k+1,

where o = — 7. As usual, if Wy, ;) # 0, we identify Wy, ;) with the subspace of
I* (o) which is the direct sum of all K-types whose highest weights lie in W ).
Note that among the nonempty W, +)’s, only Wo(g o) is finite dimensional.
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THEOREM 4.11: Assume that n is odd. Let m be an integer such that 4 < m <
n—1 and m = 0 (mod 4). If p and q are nonnegative even integers such that
p+q=m, then

(P =Wy gy C I (% - Pn) :
Hence each ¢(QP9) is an irreducible unitary submodule of I'* (g — p,). Moreover
the set {©(29): p+q =m, p and g are nonnegative and even } exhausts all
the irreducible unitary submodules of I *(% — Pn)-

SUBCASE: m = 0 (mod 4), m =n + 1. In this case, n = 3 (mod 4) and ¢ = 0.
I*(0) is on the unitary axis and

k+1

o) =,
7=0

where for each 0 < j < k+ 1, F; is the direct sum of all K-types whose highest
weights lie in the set

{/\ € A:: )\2j+1 <-k+2j-1< /\2]'_1}.
Each F; is an irreducible unitary submodule of I*(0).

THEOREM 4.12: Ifn = 3 (mod 4) and if p and q are nonnegative even integers
such that p+ q¢ = n + 1, then we have

P(QP9) = Fp C I*(0).
In particular,
It(0) = @{SO(QP’"“"’): 0<p<n+1,peven}.

SUBCASE: m > n+ 3, m = 0 (mod 4). In this case, 0 > 1. Suppose Wy, ) is
a constituent in I*(—a). Let

W*(s,t) = {/\ € A:: A* € Wa(s,t)}'

a

Explicitly, A € W;‘( ot) if and only if

Agr—1 > —(a+n—2r+1), 1<r<t,

o+2r—2<Xp1<—{a+n—-2r+1), t+1<r<k+1-3s,

Agp1 < a+ 2r — 2, k+2-s<r<k+1,
where @ = —2. If ¢ > k+1, the module diagram of I*(0) is a triangle, as given

in Figure 9.
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W;(o.m
W;(O.l) W:(I.O)
W;(0.2) W;(l,l) W;(z,o)
W:(o,k+1) W;(I,k) W;(k,l) Wn:(k+l,0)
Figure 9.

If 1 <o <k, then the module diagram of It (o) is the triangle with its top
k+1—o0 rows deleted. For any integral o > 1, each of the irreducible constituents
at the lowest row forms an irreducible submodule of I'*(¢), and only Wii0.k+1)
and W;"(k +1,0) are unitary. If 1 <o < k+ 1, then the irreducible constituents at
the top rows are also unitary.

Wi,
of I'*(o) generated by W (s.1)- Specifically, we have

X(s,t):@{ sy 128, th}.

The module diagram of X (s, t) is a subtriangle in the module diagram of I*(g).
Note that Wy, o, is finite dimensional and X(0,0) = I'*(0).

is an irreducible constituent of I* (o), we let X (s, 1) be the submodule

THEOREM 4.13: Assume that n is odd. Let m be an integer such that m > n+3
and m = 0 (mod 4). Ifp and q are nonnegative even integers such that p+q = m,
then we have

@ (QP9) = X(s,1),

and

QP»Q o *
= "a(s,t)

where s = max (0, *33=2) and t = max (0, 2+1=9). In particular, we have:
(i) ¢(@P9) = I'*(o) if and only if QP9 is finite dimensional if and only if
p2n+landgq>n+1.
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(i1) QP9 is irreducible if and only if pqg = 0.
(iii) QP9 is unitary if and only if either pg =0 or p,q <n+1.

Finally we consider 9(1). By Corollary 3.2, if n is even, and p and q are
nonnegative even integers such that p + ¢ = n, then
QP9(1) = 1 37/

We first assume that n = 0(mod 4). Then the module diagram for I*(1) is given
in Figure 10.

Liegy1,e+1 Li e Li_3.6 . . . Lo Ly

NN NS

Liy1e L,k : : ' L2,

Figure 10.

THEOREM 4.14: Let n = 0 (mod 4). If p is an odd integer such that 1 < p <
n — 1, then

Y (QP"TP(1)) = Lags s CIF(3)-

The set {y (7™"P(1)): 1 < p < n—1,podd} exhausts all the irreducible unitary
submodules of I'*(3)

Theorems 4.3 and 4.14 reveal some interesting phenomenon. By Theorem
4.3, if p and ¢ are positive odd integers such that p + g = n + 2, we also have
@ (QP9) — I*(}). More precisely, we have ¢ (Q"*11) = M(k+ 1,k + 1) and
@ (@) = M(1,1). On the other hand, ¢ (Q"~1!(1)) = Liy1s. Hence
we conclude that 2"~11(1) is isomorphic to the unique irreducible submodule
of Q"+ and Q1"~1(1) is isomorphic to the unique irreducible submodule of
Qtm+l Similarly, for 3 < p < n — 3, since ¢ (QP27P) = M(P‘;—l,%’l),

QP"P(1) and P~2"-P+2(1) are isomorphic to the two irreducible submodules
in Qp»n+2_p.

THEOREM 4.15: Suppose that n = 0 (mod 4).

(i) Q"~11(1) is isomorphic to the unique irreducible submodule of Q11
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(ii) If p is an odd integer such that 3 < p < n — 3, then QP P(1) and
QP=2n—P*2(1) are isomorphic to the two irreducible submodules of
QP 2P respectively.

(iii) Qb™~1(1) is isomorphic to the unique irreducible submodule of Q1"+1,

Qn+1 1 QP n+2—q Ql n+l

N o w @

Qn 11( ) Qp,n p( ) Qp—-2n p+2(1) an 1( )

Figure 11.
If n = 2 (mod 4), then the module diagram for 7 (}) is given in Figure 12.

M *
L3s L3,

/NN

* * * . . . * *
Ll.l L2,2 L3,3 Lk,k Lk+l.k+1

Ll:+1,k

Figure 12.

THEOREM 4.16: Let n = 2 (mod 4). If p is an even integer such that 0 < p < n,
then

D OPTHY) = Ly ey €T

The set {¢ (2*""P(1)): 0 < p < n p even} exhausts all the irreducible unitary
submodules of I*(3).

We note by Theorem 4.6 that
(P(Qn+2’0) — M’(l, 1) = 1"1 =1 (Qn,O(l)) ,

and
(0" +2) = MEk+1L,k+1)= :+1,k+1 =9 (Qo’n(l)) ’

and for 2 < p < mn, p even, we have

o (QP7H277) = a1 (";” +2,227 +2) ,
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which has two irreducible submodules isomorphic to QP"7P(1) and
QP~2n-P+2(1) respectively (see Figure 13).

THEOREM 4.17: Suppose that n = 2 (mod 4).
(i) Q™0(1) is isomorphic to Q20
(ii) If p is an even integer such that 2 < p < n — 2, then QP P(1) and
QP~2n—P+2(1) are isomorphic to the two irreducible submodules of
QP t2-P  respectively.
(iii) Q%™(1) is isomorphic to QO"+2.
Qn,z Qp,n+2_p

4 4 ! i

Q""O(l) — Qn+2,0 Qn—2,2(1) Qp’"_p(l) Qp—z,n—p+2(l)

QZ,n

4
Q2,n—2(1) Qo,n(l) — QO,n+2
Figure 13.

5. Gelfand—Kirillov dimension of irreducible constituents

Let V be an irreducible constituent of I (o) and V|x & Y, p* where R C A}
By estimating the sum

Y. dim(p),
XER
PHERETPWEY
as a polynomial in [ as in section 6 of [LZ] for the case of U(n,n), we derive the

following.

THEOREM 5.1: Let V be an irreducible constituent of I*(c) and let N(V) be
an integer defined in the following table.
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n o 1% N(V)
n =2k UE%-J—Z Lopor Ly, n
witha-b=0,1
Lapor L}, n—2a->b-1)
witha —b> 2
Lopor L}, n—2(b-a)
withb—-a>1
n=2k+1 o=k Ras,ry or R;‘(s’t) n
(mod 2) withs+t==%
Ragspy or R:(s‘,) 2(s+t+1)
with0 <s+t<k
Ujfor0< j <k n
c=k+1 Wa(s,y or W;‘(SJ) n
(mod 2) withs+t=Ek+1
Was,t) OF W;(s‘t) 2(s +1)
with0<s+t<k
Fyfor0<j<k+1 n

Then the Gelfand-Kirillov dimension of V is equal to N(V)(n — J—V(—vz)——_—l)

Thus, for example, if n = 2k, 0 € £ +Z, 0 > 3, and [0] = k (mod 2), the
irreducible constituents of I*(o) are Lo, with —1 < b — a < min([c],k). In
the lowest row of the module diagram of I*(g), where b —a = —1, the G-K

m;—ll. and in the next higher level

dimension of each of the k constituents is
{where b—a = 0), the G-K dimension for the £+ 1 constituents remains the same.
Further up the G-K dimensions of each level will strictly decrease. If o > k + %
then the G-K dimension of the constituents in all the level will take the values

N(n — ¥31), where N =n,n,n—2,n~4,...,2,0.
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